|
|
|
|
|
CSC515Y - VALUE ADDED COURSE - LINUX (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:100 |
Credits:0 |
Course Objectives/Course Description |
|
Course Objectives The main objectives of this course are to:
|
|
Learning Outcome |
|
CO1: Navigate the Linux file system, execute basic commands, and perform routine file management tasks efficiently. CO2: Demonstrate proficiency in managing user accounts, installing and managing software packages, and monitoring system resources effectively CO3: Write and execute shell scripts to automate routine tasks, manage system configurations, and enhance productivity.
CO4: Understand basic networking concepts, remote access methods, and security measures, enabling them to configure and maintain secure Linux systems. |
Unit-1 |
Teaching Hours:30 |
List of programs
|
|
Lab Exercise 1: Introduction to Linux
Lab Exercise 2: File Manipulation and Permissions
Lab Exercise 3: Text Processing Tools
Lab Exercise 4: User and Group Management
Lab Exercise 5: Process Management
Lab Exercise 6: Package Management
Lab Exercise 7: Shell Scripting Basics
Lab Exercise 8: Networking and Remote Access
Lab Exercise 9: System Administration
Lab Exercise 10: Security and Firewall Configuration
Lab Exercise 11: Virtualization with Linux
Lab Exercise 12: Advanced Topics
| |
Text Books And Reference Books: Linux: The Complete Reference , Sixth Edition, Petersen Richard | |
Essential Reading / Recommended Reading Linux Learning Essentials By K. L. JAMES · 2011 | |
Evaluation Pattern 50% CIA , 50% ESE | |
CSC531Y - MOBILE APPLICATIONS (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
Students will be able to build up an environment for developing Android applications, construct user-friendly user interfaces, manage many tasks, develop persistent applications, handle cloud data, test their apps, and release them onto the market with the help of this course. |
|
Learning Outcome |
|
CO1: Understand the basic concepts of Mobile application development CO2: Design and develop user interfaces for the Android platforms CO3: Build enterprise level mobile applications with Kotlin on Android CO4: Apply Kotlin programming concepts to Android application development |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||
Introduction to Android
|
|||||||||||||||||||
History of Mobile Apps, Trends in Market - Web App Vs Mobile App - Mobile OS. Introduction to Android and Kotlin: Kotlin Basics – variables - Functions. First Android App – Setup Android Studio - Deploying the app: Running and Debugging app in Android Emulator. | |||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||
Layout and Activity
|
|||||||||||||||||||
Kotlin Fundamentals: Classes and Objects - Inheritance. Activity: Introduction to Activity - Activity Lifecycle – Logging. Layouts in Android - Types of Layouts, Multiple activities and Intents. | |||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||
Views
|
|||||||||||||||||||
Input controls:Text Box, Radio Button, Check Box, Command Button. Using Basic Views- Using Image Views to Display Pictures. | |||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||
Fragment & Menus
|
|||||||||||||||||||
Using Picker Views -Using List Views to Display Long Lists - Fragments: Introduction - Lifecycle- Task and Back Stack. Android App Architecture - View Model - Data Binding – Live Data- Transform Live Data. Menus - Types of Menu. | |||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||
Saving User Data
|
|||||||||||||||||||
Displaying lists with RecyclerView. Store Data-Room Persistency Library-Asynchronous program-Coroutines-Testing Databases. | |||||||||||||||||||
Text Books And Reference Books: 1. How to Build Android Apps with Kotlin: A Practical Guide to Developing, Testing and Publishing Your First Android Apps. Forrester, A., Boudjnah, E., Dumbravan, A., Tigcal, J. United Kingdom: Packt Publishing 2023. 2. Nagy, Robert. Simplifying Application Development with Kotlin Multiplatform Mobile: Write Robust Native Applications for IOS and Android Efficiently. United Kingdom, Packt Publishing, 2022. 3. https://developer.android.com | |||||||||||||||||||
Essential Reading / Recommended Reading 1. Griffiths, Dawn, and Griffiths, David. Head First Android Development. United States, O'Reilly Media, 2021. 2. Kotlin for Android App Development.Sommerhoff, P. United Kingdom: Pearson Education 2018. | |||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||
CSC543AY - DATA ANALYTICS (2022 Batch) | |||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||
The main objectives of this course are to
|
|||||||||||||||||||
Learning Outcome |
|||||||||||||||||||
CO1: Understand the fundamentals of Data Analytics. CO2: Apply the data visualization concepts required for business intelligence. CO3: Apply data pre-processing techniques. CO4: Build a performance dashboard using data visualization and visual analytics. |
Unit-1 |
Teaching Hours:9 |
Wholeness of Data Analytics
|
|
Business Intelligence - Pattern Recognition - Data Processing Chain : Data – Database – Data Warehouse – Data Mining - Data Visualization – Data Warehousing : - Caselet: University Health System – BI in Healthcare Design Considerations for DW - DW Development Approaches - DW Architecture - Data Sources - Data Loading Processes - Data Warehouse Design DW Access. | |
Unit-2 |
Teaching Hours:9 |
Data Mining and Data Visualization
|
|
Gathering and selecting data- Data cleansing and preparation - Outputs of Data Mining - Evaluating Data Mining Results - Data Mining Techniques - Tools and Platforms for Data Mining - Data Mining Best Practices - Excellence in Visualization - Types of Charts - Visualization Example. | |
Unit-3 |
Teaching Hours:9 |
Decision Tress and Regression
|
|
Decision Tree Problem – Decision Tree Construction – Decision Tree Algorithms – Correlations and Relationship- Regression exercise and analysis – Non –linear regression – Logistic Regression – Pros and Cons – Cluster Analysis : Applications of Cluster Analysis 8 Definition of a Cluster Representing clusters Clustering techniques Clustering Exercise K-Means Algorithm for clustering Selecting the number of clusters Advantages and Disadvantages of K-Means algorithm. | |
Unit-4 |
Teaching Hours:9 |
Text Mining and Web Mining
|
|
Web content mining Web structure mining Web usage mining Web Mining Algorithms - Text Mining Applications Text Mining Process Term Document Matrix Mining the TDM Comparing Text Mining and Data Mining - Caselet: WhatsApp and Private Security. | |
Unit-5 |
Teaching Hours:9 |
Big Data
|
|
Introduction to Big Data: Types of Digital Data-Characteristics of Data – Evolution of Big Data - Definition of Big Data - Challenges with Big Data - 3Vs of Big Data - Non Definitional traits of Big Data - Business Intelligence vs. Big Data - Big Data Landscape - Business Implications of Big Data - Technology Implications of Big Data - Big Data Technologies - Management of Big Data. | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern CIA 50% ESE 50% | |
CSC543BY - INTERNET OF THINGS (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The main objectives of this course are to
|
|
Learning Outcome |
|
CO1: Understand and appreciate the basic concepts and principles of IoT. CO2: Understand and apply various protocols for the design of IoT systems. CO3: Design and develop IoT designs for real-time applications. |
Unit-1 |
Teaching Hours:9 |
Introduction to Internet of Things
|
|
Importance to Internet of Things – Opportunities – Connecting Devices – IoT Forum. Internet of Things Architecture: Basic Layer Architecture – IoT Network Layer Entities – Sensors and Actuators – Techniques for Data Acquisition and Control – Edge Layer – Cloud Data Management Architecture – Data Storage Layer. | |
Unit-2 |
Teaching Hours:9 |
IoT Reference Layers and Protocol Stacks
|
|
The ISO/OSI Model – IoT Prespective – TCP/IP Model and IoT Reference Model. IoT Enabling Platforms: Edge Device Platforms – IoT Gateway Devices – IoT Cloud Platforms – IoT Application Platforms – Processors – Software: OpenWSN, TinyOS, FreeRTOS, Contikit, Web-based IoT Design platforms. | |
Unit-3 |
Teaching Hours:9 |
IoT Physical Devices
|
|
Introduction to Arduino, Arduino UNO, Installing the Software, Fundamentals of Arduino Programming. IoT Physical Devices and Endpoints - RaspberryPi: Introduction to RaspberryPi, About the RaspberryPi Board: Hardware Layout, Operating Systems on RaspberryPi, Configuring RaspberryPi, Programming RaspberryPi with Python. | |
Unit-4 |
Teaching Hours:9 |
IoT Physical Servers and Cloud Offerings
|
|
Introduction to Cloud Storage models and communication APIs. Webserver – Web server for IoT, Cloud for IoT, Python web application framework. Designing RESTful web API. Connecting to APIs. | |
Unit-5 |
Teaching Hours:9 |
IoT Applications
|
|
Home Automation, Smart Cities, Environment Monitoring, Retail, Logistics, Supply chain management, Agriculture and Breeding, Industry Automation, Medical and Health care | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern CIA 50% ESE 50%
| |
CSC543CY - ARTIFICIAL INTELLIGENCE (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The main objectives of this course are to
|
|
Learning Outcome |
|
CO1: Understand the fundamentals of Artificial Intelligence. CO2: Apply the concepts of intelligence systems. CO3: Apply optimizing the automation of semantic interoperability among web services. CO4: Build robotics systems encompassing multi-disciplinary software components. |
Unit-1 |
Teaching Hours:8 |
Fundamental Ideas of AI
|
|
History of AI - Symbolic AI: Cognitive Simulation, Logic-Based Approach, Rule-Based Knowledge Representation, Structural Knowledge Representation, Mathematical Linguistics Approach - Computational Intelligence: Connectionist Models, Mathematics-Based Models, Biology-Based Models. | |
Unit-2 |
Teaching Hours:9 |
Artificial Intelligence Methods
|
|
Search Methods: State space and search tree, Blind search, Heuristic search, Adversaial search, search for constraint satifaction problems, special methods of heuristic search | |
Unit-3 |
Teaching Hours:10 |
Evolutionary Computing
|
|
Genetic algorithms , Evolution Strategies, Evolutionary Programming, Genetic Programming, Other biology-Inspired models, Rule-Bases Systems: Model of Rule-based systems, Reasoning strategies in rule-based systems, conflict resolution and rule matching, Expert systems Vs Rule-Based Systems. | |
Unit-4 |
Teaching Hours:10 |
Neural Networks
|
|
Artifical Neuron, Basic Structures of Neural Networks, Concise Survey of Neural Network models, Reasoning with Imperfect Knowledge: Bayesian Inference and Bayes Networks, Dempster-Shafter Theory, Non-monotonic Reasoning, Defining Vague Notions in Knowledge-Based Systems: Model Based on Fuzzy set theory, rough set theory, cognitive Architecture: Concept of Agent, Multi-agent Systems. | |
Unit-5 |
Teaching Hours:8 |
Application and Prospects of AI
|
|
Perception and Pattern recognition, Knowledge representation, problem solving, reasoning , Decision making, Natural Language processing (NLP), Learning, Manipulation and Locomation , Social Intelligence, Emotional Intelligence and creativity, Issues of AI, Potential Barriers and Challenges in AI, Determinants of AI development- Case Studies. | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading Introduction to Artificial Intelligence by Mariusz Flasinski, Springer, 2016 | |
Evaluation Pattern CIA 50% ESE 50% | |
CSC552Y - MOBILE APPLICATIONS LAB (2022 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
This course offers an experimental view of mastering Kotlin programming for Android app development. Objective of the course is to understand the working principle and implement essential Android features and components using Kotlin. |
|
Learning Outcome |
|
CO1: Students will be able to demonstrate proficiency in developing functional Android applications using Kotlin. CO2: Students will be able to apply core Android concepts effectively to design and implement user-friendly mobile interfaces. |
Unit-1 |
Teaching Hours:60 |
||||||||||||||||||
LAB PROGRAMS
|
|||||||||||||||||||
Lab Exercise 1: Create a simple app that displays text and an image. Use TextView for text display and ImageView for image display. You can either use static text and image resources or fetch them dynamically from the internet. Lab Exercise 2: Create an app where users can perform basic arithmetic operations (addition, subtraction, multiplication, division). Implement functions to handle each operation and display the result. Lab Exercise 3: Develop an app with multiple activities. Use intents to navigate between activities. For example, create a login page as one activity and a dashboard as another activity. Use intents to pass data between these activities. Lab Exercise 4: Create an app that logs lifecycle events of an activity. Override lifecycle methods such as onCreate(), onStart(), onResume(), onPause(), onStop(), onDestroy(), and log messages in each method to understand the activity lifecycle. Lab Exercise 5: Build a form-based app that includes various input controls like EditText, RadioButton, CheckBox, Spinner, etc. Allow users to input data using these controls and perform actions based on user input. Lab Exercise 6: Develop an app where users can view a collection of images. Use RecyclerView to display a grid or list of images fetched from local storage or the internet. Implement click listeners to view individual images in full-screen mode. Lab Exercise 7: Create an app with multiple fragments. Log lifecycle events of each fragment similar to activity lifecycle events. Understand how fragments behave during various stages like creation, attachment, visibility changes, etc. Lab Exercise 8: Design an app with a menu bar. Implement options menu or context menu based on user interactions. Add menu items that perform different actions like opening settings, sharing content, etc. Lab Exercise 9: Build an app that utilizes RecyclerView to display a list of items. Use RecyclerView.Adapter and RecyclerView.ViewHolder to manage the data and UI for each item. Implement item click listeners to perform actions when an item is clicked. Lab Exercise 10: Create an app that stores user preferences using SharedPreferences. Allow users to customize app settings such as theme color, font size, etc., and store these preferences using SharedPreferences. Retrieve and apply these preferences when the app restarts | |||||||||||||||||||
Text Books And Reference Books: 1. How to Build Android Apps with Kotlin: A Practical Guide to Developing, Testing and Publishing Your First Android Apps. Forrester, A., Boudjnah, E., Dumbravan, A., Tigcal, J. United Kingdom: Packt Publishing 2023. 2. Nagy, Robert. Simplifying Application Development with Kotlin Multiplatform Mobile: Write Robust Native Applications for IOS and Android Efficiently. United Kingdom, Packt Publishing, 2022. 3. https://developer.android.com | |||||||||||||||||||
Essential Reading / Recommended Reading 1. Griffiths, Dawn, and Griffiths, David. Head First Android Development. United States, O'Reilly Media, 2021. 2. Kotlin for Android App Development.Sommerhoff, P. United Kingdom: Pearson Education 2018. | |||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||
CSC554AY - DATA ANALYTICS LAB (2022 Batch) | |||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||||||||||||||||
Max Marks:100 |
Credits:2 |
||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||
The main objectives of this course are to:
|
|||||||||||||||||||
Learning Outcome |
|||||||||||||||||||
CO1: Understand the fundamentals of Data Analytics, including the data processing chain, pattern recognition, and business intelligence concepts. CO2: Apply the concepts of data visualization required for Business Intelligence, effectively communicating insights from data through visualization techniques CO3: Apply data pre-processing techniques, including gathering, selecting, cleansing, and preparing data for analysis. CO4: Build a performance dashboard using data visualization and visual analytics, demonstrating proficiency in analyzing and presenting data-driven insights for decision-making purposes. |
Unit-1 |
Teaching Hours:60 |
List of programs
|
|
Lab Exercise 1: Explore the concepts of Business Intelligence and its applications in real-world scenarios. Lab Exercise 2: Understand the data processing chain, including data collection, storage, and mining. Lab Exercise 3: Learn various data visualization techniques and tools used in Business Intelligence. Lab Exercise 4: Design and develop a data warehouse architecture for a given scenario. Lab Exercise 5: Analyze a case study on BI implementation in the healthcare sector and identify design considerations for data warehousing. Lab Exercise 6: Implement data mining techniques such as gathering, selecting, and preparing data for analysis. Lab Exercise 7: Evaluate the results of data mining operations and interpret their significance. Lab Exercise 8: Implement decision tree algorithms and regression analysis techniques using Python or R. Lab Exercise 9: Explore non-linear regression models and logistic regression for classification tasks. Lab Exercise 10: Implement cluster analysis techniques such as K-Means algorithm and evaluate their performance. Lab Exercise 11: Study web content mining, web structure mining, and web usage mining algorithms. Lab Exercise 12: Implement text mining techniques for extracting insights from textual data. Lab Exercise 13: Build and analyze term-document matrices for text mining applications. Lab Exercise 14: Compare and contrast text mining and data mining techniques based on their applications and algorithms. Lab Exercise 15: Analyze a case study on text mining and web mining in the context of WhatsApp and private security.
Lab Exercise 16: Explore big data technologies and management strategies, including Hadoop, Spark, and NoSQL databases. | |
Text Books And Reference Books: - | |
Essential Reading / Recommended Reading - | |
Evaluation Pattern CIA 50% ESE 50% | |
CSC554BY - INTERNET OF THINGS LAB (2022 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
The main objectives of this course are to:
|
|
Learning Outcome |
|
CO1: Gain proficiency in understanding the fundamental principles and concepts of Internet of Things (IoT) technology. CO2: Develop practical skills in hardware interfacing, sensor integration, and programming with Arduino microcontroller boards. CO3: Acquire competency in using IoT development tools, including the Arduino IDE and cloud platforms, for data collection, analysis, and visualization. CO4: Demonstrate the ability to design, implement, and evaluate basic IoT applications, such as smart home automation and sensor data monitoring, through hands-on lab exercises and projects. |
Unit-1 |
Teaching Hours:60 |
List of programs
|
|
Lab Exercise 1: Understanding Arduino UNO Board and Components Lab Exercise 2: Installing and work with Arduino IDE Lab Exercise 3: Blinking LED with Arduino Lab Exercise 4: Simulation of 4-Way Traffic Light with Arduino Lab Exercise 5: Working with Temperature, Humidity, Light, Sound and other sensors Lab Exercise 6: Developing smart-home automation with IoT Lab Exercise 7: Developing smart security applications with IR and other sensors Lab Exercise 8: Interfacing Arduino with Cloud (Thingspeak API) Lab Exercise 9: Storing and retrieving sensor data with Cloud
Lab Exercise 10: Developing simple Mobile Application to interact with IoT sensors, Cloud | |
Text Books And Reference Books: - | |
Essential Reading / Recommended Reading - | |
Evaluation Pattern CIA 50% ESE 50% | |
CSC554CY - ARTIFICIAL INTELLIGENCE LAB (2022 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
The main objectives of this course are to:
|
|
Learning Outcome |
|
CO1: Demonstrate proficiency in implementing and analyzing graph traversal algorithms, such as Breadth First Search (BFS) and Depth First Search (DFS), and apply them to solve various graph-related problems. CO2: Develop practical skills in solving classic artificial intelligence (AI) problems, including puzzles like Tic-Tac-Toe, 8-Puzzle, and the 8-Queens Problem, using Python programming language CO3: Apply different search algorithms, heuristic search techniques, and problem-solving strategies to solve real-world problems in AI and game development domains, and evaluate their effectiveness. CO4: Enhance critical thinking, algorithmic reasoning, and programming proficiency through hands-on programming exercises, projects, and problem-solving tasks, preparing students for advanced studies and careers in computer science, artificial intelligence, and related fields. |
Unit-1 |
Teaching Hours:60 |
List of programs
|
|
Lab Exercise 1: Implement Breadth First Search (BFS) algorithm in Python. Lab Exercise 2: Implement Depth First Search (DFS) algorithm in Python. Lab Exercise 3: Develop a Tic-Tac-Toe game in Python. Lab Exercise 4: Create a program to solve the 8-Puzzle problem using Python. Lab Exercise 5: Implement the Water-Jug problem solver in Python. Lab Exercise 6: Develop a program to solve the Travelling Salesman Problem (TSP) in Python. Lab Exercise 7: Write a Python program to solve the Tower of Hanoi puzzle. Lab Exercise 8: Implement the Monkey Banana Problem solver using Python. Lab Exercise 9: Create a Python program to solve the Missionaries and Cannibals problem. Lab Exercise 10: Implement the 8-Queens Problem solver in Python. Lab Exercise 11: Write a Python program to solve problems using the Hill Climbing algorithm.
Lab Exercise 12: Develop a Python program to solve problems using the A* algorithm. | |
Text Books And Reference Books: - | |
Essential Reading / Recommended Reading - | |
Evaluation Pattern CIA 50% ESE 50% | |
MAT531 - LINEAR ALGEBRA (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
Course Description: This course aims at developing the ability to write the mathematical proofs. It helps the students to understand and appreciate the beauty of the abstract nature of mathematics and also to develop a solid foundation of theoretical mathematics. Course Objectives : This course will help the learner to COBJ1. understand the theory of matrices, concepts in vector spaces and Linear Transformations. COBJ2. gain problems solving skills in solving systems of equations using matrices, finding eigenvalues and eigenvectors, vector spaces and linear transformations. |
|
Learning Outcome |
|
CO1: On successful completion of the course, the students should be able to use properties of matrices to solve systems of equations and explore eigenvectors and eigenvalues. CO2: On successful completion of the course, the students should be able to understand the concepts of vector space, basis, dimension, and their properties. CO3: On successful completion of the course, the students should be able to analyse the linear transformations in terms of matrices. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Matrices and System of linear equations
|
|||||||||||||||||||||||||||||
Elementary row operations, rank, inverse of a matrix using row operations, Echelon forms, normal forms, system of homogeneous and non-homogeneous equations, Cayley Hamilton theorem, eigenvalues and eigenvectors, diagonalization of square matrices. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Vector Spaces
|
|||||||||||||||||||||||||||||
Vector space-examples and properties, subspaces-criterion for a subset to be a subspace, linear span of a set, linear combination, linear independent and dependent subsets, basis and dimensions, and standard properties. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Transformations
|
|||||||||||||||||||||||||||||
Linear transformations, properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, rank-nullity theorem, non-singular linear transformation, eigenvalues and eigenvectors of a linear transformation. | |||||||||||||||||||||||||||||
Text Books And Reference Books: 1. S. Narayan and P.K. Mittal, Text book of Matrices, 10th ed., New Delhi: S Chand and Co. Ltd, 2004. 2. V. Krishnamurthy, V. P. Mainra, and J. L. Arora, An introduction to linear algebra. New Delhi, India: Affiliated East East-West Press Pvt Ltd., 2003. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. D. C. Lay, Linear Algebra and its Applications, 3rd ed., Indian Reprint, Pearson Education Asia, 2007. 2. S. Lang, Introduction to Linear Algebra, 2nd ed., New York: Springer-Verlag, 2005. 3. S. H. Friedberg, A. Insel, and L. Spence, Linear algebra, 4th ed., Pearson, 2015. 4. Gilbert Strang, Linear Algebra and its Applications, 4th ed., Thomson Brooks/Cole, 2007. 5. K. Hoffmann and R. A. Kunze, Linear algebra, 2nd ed., PHI Learning, 2014. | |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT541B - MATHEMATICAL MODELLING (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course is concerned with the fundamentals of mathematical modeling. It deals with finding solution to real world problems by transforming into mathematical models using differential equations. The coverage includes mathematical modeling through first order, second order and system of ordinary differential equations. Course objectives: This course will help the learner to This course will help the learner to COBJ1. interpret the real-world problems in the form of first and second order differential equations. COBJ2. familiarize with some classical linear and nonlinear models. COBJ3. analyse the solutions of systems of differential equations by phase portrait method. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to apply differential equations in other branches of sciences, commerce, medicine and others CO2.: On successful completion of the course, the students should be able to understand the formulation of some classical mathematical models. CO3.: On successful completion of the course, the students should be able to demonstrate competence with a wide variety of mathematical tools and techniques. CO4.: On successful completion of the course, the students should be able to build mathematical models of real-world problems. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through First Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
Population Dynamics, Carbon dating, Newtons law of cooling, Epidemics, Economics, Medicine, mixture problem, electric circuit problem, Chemical reactions, Terminal velocity, Continuously compounding of interest. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through Second Ordinary Differential Equations
|
|||||||||||||||||||||||||||||
The vibrations of a mass on a spring, free damped motion, forced motion, resonance phenomena, electric circuit problem, Nonlinear-Pendulum. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Mathematical Modeling through system of linear differential equations:
|
|||||||||||||||||||||||||||||
Phase plane analysis: Phase Portrait for Linear and Non-Linear Systems, Stability Analysis of Solution, Applications, Predator prey model: Lotka-Volterra Model, Kermack-McKendrick Model, Predator-Prey Model and Harvesting Analysis, Competitive-Hunter Model, Combat models: Lanchester Model, Battle of IWO Jima, Battle of Vietnam, Battle of Trafalgar., Mixture Models, Epidemics-SIR model, Economics. | |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT541C - GRAPH THEORY (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course is an introductory course to the basic concepts of Graph Theory. This includes a definition of graphs, types of graphs, paths, circuits, trees, shortest paths, and algorithms to find shortest paths. Course objectives: This course will help the learner to COBJ 1. gain conceptual knowledge on terminologies used in graph theory.
COBJ 2. understand the results on graphs and their properties. COBJ 3. gain proof writing and algorithm writing skills. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to understand the terminology related to graphs CO2: On successful completion of the course, the students should be able to analyze the characteristics of graphs by using standard results on graphs CO3: On successful completion of the course, the students should be able to apply proof techniques and write algorithms |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Graphs
|
|||||||||||||||||||||||||||||
Graphs, connected graphs, classes of graphs, regular graphs, degree sequences, matrices, isomorphic graphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Connectivity
|
|||||||||||||||||||||||||||||
Bridges, trees, minimum spanning trees, cut-vertices, blocks, traversability, Eulerian and Hamiltonian graphs, digraphs. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Planarity
|
|||||||||||||||||||||||||||||
Matching, factorizations, decompositions, graceful labeling, planar graphs, Embedding graphs on surfaces. | |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT541E - OPERATIONS RESEARCH (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: Operations research deals with the problems on optimization or decision making that are affected by certain constraints / restrictions in the environment. This course aims at teaching solution techniques of solving linear programming models, simple queuing model, two-person zero sum games and Network models. Course objectives: This course will help the learner to COBJ1. gain an insight executing the algorithms for solving linear programming problems including transportation and assignment problems. COBJ2. learn about the techniques involved in solving the two person zero sum game. COBJ3. calculate the estimates that characteristics the queues and perform desired analysis on a network. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to solve Linear Programming Problems using Simplex Algorithm, Transportation and Assignment Problems.
CO2: On successful completion of the course, the students should be able to find the estimates that characterizes different types of Queuing Models.
CO3: On successful completion of the course, the students should be able to obtain the solution for two person zero sum games using Linear Programming. CO4: On successful completion of the course, the students should be able to formulate Maximal Flow Model using Linear Programming and perform computations using PERT and CPM. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Introduction to Linear Programming Problems
|
|||||||||||||||||||||||||||||
Introduction to simplex algorithm –Special cases in the Simplex Method –Definition of the Dual Problem – Primal Dual relationships – Dual simplex methods. Transportation Models: Determination of the starting solution – iterative computations of the transportation algorithm. Assignment Model: The Hungarian Method. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Queuing Theory and Game Theory
|
|||||||||||||||||||||||||||||
Elements of a queuing Model – Pure Birth Model – Pure Death Model –Specialized Poisson Queues – Steady state Models: (M/M/1):(GD/∞/∞) – (M/M/1):(FCFS/∞/∞) - (M/M/1):(GD/N/∞) – (M/M/c):(GD/∞/∞) – (M/M/∞):(GD/∞/∞). Game Theory: Optimal solution of two person zero-sum games – Solution of Mixed strategy Games (only Linear programming solution).
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Network Models
|
|||||||||||||||||||||||||||||
Linear programming formulation of the shortest-route Problem. Maximal Flow model:- Enumeration of cuts – Maximal Flow Algorithm – Linear Programming Formulation of Maximal Flow Model. CPM and PERT:- Network Representation – Critical path computations – Construction of the Time Schedule – Linear Programming formulation of CPM – PERT calculations. | |||||||||||||||||||||||||||||
Text Books And Reference Books: A.H. Taha, Operations research, 9th ed., Pearson Education, 2014. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT551 - LINEAR ALGEBRA USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: This course aims at providing hands on experience in using Python functions to illustrate the notions vector space, linear independence, linear dependence, linear transformation and rank. Course objectives: This course will help the learner to COBJ1. The built in functions required to deal with vectors and Linear Transformations. COBJ2. Python skills to handle vectors using the properties of vector spaces and linear transformations |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to use Python functions in applying the notions of matrices and system of equations.
CO2: On successful completion of the course, the students should be able to use Python functions in applying the problems on vector space.
CO3: On successful completion of the course, the students should be able to apply python functions to solve the problems on linear transformations.
|
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT551B - MATHEMATICAL MODELLING USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: This course provides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary differential equations (ODEs) using Python programming. Course objectives: This course will help the learner to COBJ1. various models spanning disciplines such as physics, biology, engineering, and finance. COBJ2. develop the basic understanding of differential equations and skills to implement numerical algorithms to solve mathematical problems using Python. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1.: On successful completion of the course, the students should be able to acquire proficiency in using Python. CO2.: On successful completion of the course, the students should be able to demonstrate the use of Python to understand and interpret applications of differential equations CO3.: On successful completion of the course, the students should be able to apply the theoretical and practical knowledge to real life situations. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Propopsed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: H P Langtangen, A Primer on Scientific Programming with Python, 2nd ed., Springer, 2016. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT551C - GRAPH THEORY USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: The course graph theory using Python is aimed at enabling the students to appreciate and understand core concepts of graph theory with the help of technological tools. It is designed with a learner-centric approach wherein the students will understand the concepts of graph theory using programming tools and develop computational skills. Course objectives: This course will help the learner to COBJ1. gain familiarity in Python language using jupyter interface and NetworkX package COBJ2. construct graphs and analyze their structural properties. COBJ3. implement standard algorithms for shortest paths, minimal spanning trees and graph searching.. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to
construct graphs using related matrices CO2: On successful completion of the course, the students should be able to
compute the graph parameters related to degrees and distances CO3: On successful completion of the course, the students should be able to
gain mastery to deal with optimization problems related to networks CO4: On successful completion of the course, the students should be able to
apply algorithmic approach in solving graph theory problems |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: Mohammed Zuhair, Kadry, Seifedine, Al-Taie, Python for Graph and Network Analysis.Springer, 2017. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT551E - OPERATIONS RESEARCH USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: Operations research deals with the problems on optimization or decision making that are affected by certain constraints / restrictions in the environment. This course aims to enhance programming skills in Python to solve problems chosen from Operations Research.
Course objectives: This course will help the learner to COBJ1. gain a familiarity in using Python to solve linear programming problems, calculate the estimates that characteristics the queues and perform desired analysis on a network. COBJ2. use Python for solving problems on Operations Research. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to use Python programming to solve linear programming problems by using simplex method and dual simplex method. CO2: On successful completion of the course, the students should be able to solve Transportation Problems and Assignment Problems using Python module. CO3: On successful completion of the course, the students should be able to demonstrate competence in using Python modules to solve M/M/1, M/M/c queues, and Computations on Networks. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: Garrido José M. Introduction to Computational Models with Python. CRC Press, 2016 | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
CSC631Y - COMPUTER NETWORKS (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
The main objectives of this course are to
|
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: Understand the concept of computer networks in the Internet, transmission medium, Data conversion and Error correction in networking functionalities. CO2: Apply the concept of multiplexing, switching techniques using wired and wireless LANs in networking. CO3: Analyze and implement routing algorithm services in various applications. |
Unit-1 |
Teaching Hours:9 |
OVERVIEW OF NETWORK MODELS
|
|
Introduction to Data communications- Network Types: Local Area Network- Wide Area Network - Protocols and standards : protocols-standards-standards organizations- internet standards Network models: OSI model – layers in the OSI model – TCP/IP protocol suite. | |
Unit-2 |
Teaching Hours:9 |
TRANSMISSION MEDIUM AND ERROR CORRECTION
|
|
Transmission Medium: Guided Media - Twisted-Pair Cable- Coaxial Cable - Fiber-Optic Cable Unguided Media: Wireless -Radio Waves - Microwaves - Infrared - Transmission Mode-Digital to Analog Control-Analog to Digital Conversion-Introduction to errors-Redundancy- Detection Versus Correction. | |
Unit-3 |
Teaching Hours:9 |
SWITCHING, MULTIPLEXING AND DATA LINK CONTROL
|
|
Switching: Circuit Switched Neytworks- Packet Switching, Multiplexing - types of Multiplexing - Multiplexing Application – Spread Spectrum- Datagram Networks- Virtual Circuit Network-Framing. | |
Unit-4 |
Teaching Hours:9 |
WIRED AND WIRELESS LANS
|
|
IEEE Standards - Standard Ethernet: Addressing - Access Method- Efficiency of Standard Ethernet and Implementation -Fast Ethernet : Access Method, Physical layer -IEEE 802.11 : Architecture - MAC Sublayer - Addressing Mechanism - Physical Layer – Bluetooth: Architecture-Bluetooth Layers - ATM-ATM LAN. | |
Unit-5 |
Teaching Hours:9 |
ROUTING AND WORLD WIDE WEB
|
|
Repeaters Bridges- Routers - Gateway - Routing algorithms : Distance-Vector Routing - Link-State Routing - Path-Vector Routing – TCP: TCP Services - TCP Features - Segment - A TCP Connection –UDP : User Datagram - UDP services- UDP Applications -DNS- File Transfer - World Wide Web Architecture-Web document. | |
Text Books And Reference Books: Behrouz and Forouzan Data Communication and Networking, TMH, 5th Edition, 2017. | |
Essential Reading / Recommended Reading
| |
Evaluation Pattern CIA 50% ESE 50% | |
CSC642AY - CLOUD COMPUTING (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
|
|
Learning Outcome |
|
CO1: Understand the basic concepts and principles of cloud computing and its significance in modern IT infrastructures. CO2: Analyze and evaluate different cloud computing architectures and deployment models for specific business requirements. CO3: Demonstrate proficiency in utilizing cloud storage solutions and managing data in cloud environments. CO4: Apply security best practices and implement measures to ensure data protection and confidentiality in cloud computing systems. |
Unit-1 |
Teaching Hours:9 |
Introduction to Cloud Computing
|
|
Cloud Computing Foundation: Introduction to Cloud Computing – Move to Cloud Computing – Types of Cloud – Working of Cloud Computing. | |
Unit-2 |
Teaching Hours:9 |
Cloud Computing Architecture
|
|
Cloud Computing Architecture: Cloud Computing Technology – Cloud Architecture – Cloud Modelling and Design - Virtualization: Foundation – Grid, Cloud and Virtualization – Virtualization and Cloud Computing. | |
Unit-3 |
Teaching Hours:9 |
Data Storage and Management in the Cloud
|
|
Data Storage and Cloud Computing: Data Storage – Cloud Storage – Cloud Storage from LANs to WANs – Cloud Computing Services: Cloud Services – Cloud Computing at Work. | |
Unit-4 |
Teaching Hours:9 |
Security in Cloud Computing
|
|
Cloud Computing and Security: Risks in Cloud Computing – Data Security in Cloud – Cloud Security Services – Cloud Computing Tools: Tools and Technologies for Cloud – Cloud Mashaps – Apache Hadoop – Cloud Tools. | |
Unit-5 |
Teaching Hours:9 |
Cloud Computing Tools and Technologies
|
|
Cloud Applications – Moving Applications to the Cloud – Microsoft Cloud Services – Google Cloud Applications – Amazon Cloud Services – Cloud Applications. | |
Text Books And Reference Books: Cloud Computing – A Practical Approach for Learning and Implementation, A.Srinivasan and J.Suresh, Pearson India Publications, 2014. | |
Essential Reading / Recommended Reading Cloud Computing: Principles and Paradigms, edited by RajkumarBuyya, James Broberg, Andrzej, Wiley India Publications, 2011. | |
Evaluation Pattern CIA 50% ESE 50% | |
CSC642BY - DIGITAL IMAGE PROCESSING (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The main objectives of this course are to
|
|
Learning Outcome |
|
CO1: Understand digital image processing principles and terminology. CO2: Apply spatial domain techniques for image enhancement and restoration. CO3: nalyze noise models and implement suitable restoration methods. CO4: Efficiently compress digital images using lossless and lossy compression methods. CO5: Implement image segmentation algorithms for partitioning images. |
Unit-1 |
Teaching Hours:9 |
Introduction to Image Processing
|
|
Overview of Image Processing, Nature of Image Processing, Digital Image Representation, Types of Images, Digital Image Processing Operations, Fundamental Steps in Image Processing. Digital Imaging System: Physical Aspects of Imaging Acquisition, Biological Aspects of Image Acquisition, Review of Digital Camera, Sampling and Quantization, Image Quality, Image Storage and File Formats. Applications of Image Processing: Medical imaging, Robot vision, Character recognition, Remote Sensing. | |
Unit-2 |
Teaching Hours:9 |
Image Enhancement nn Spatial Domain
|
|
Some basic gray-level transformations, Histogram processing, Smoothing and Sharpening spatial filters. Image Enhancement In Frequency Domain: Smoothing and Sharpening frequency domain filters, Homomorphic filtering. | |
Unit-3 |
Teaching Hours:9 |
Image Restoration
|
|
Noise models, Restoration in the presence of noise only-spatial filtering, Estimating the degradation functions, Inverse filtering. | |
Unit-4 |
Teaching Hours:9 |
Image Compression
|
|
Image compression models, Loss-less and Lossy compression. Image Segmentation: Detection of discontinuities, Edge linking and boundary detection, Thresholding, Region-based segmentation. | |
Unit-5 |
Teaching Hours:9 |
Colour Image Processing Fundamentals
|
|
Devices for Colour Imaging, Colour Image Storage and Processing, Colour Models, Colour Quantization Recent developments. | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern CIA 50% ESE 50% | |
CSC642CY - NEURAL NETWORKS AND DEEP LEARNING (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The main objectives of this course are to
|
|
Learning Outcome |
|
CO1: Gain a comprehensive understanding of neural network architectures, including perceptrons, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and autoencoders CO2: Develop proficiency in implementing and training neural network models using appropriate algorithms and frameworks. CO3: Acquire practical skills in applying neural networks to various domains such as image recognition, natural language processing, and time series analysis. CO4: Demonstrate the ability to analyze, evaluate, and optimize neural network models for improved performance and efficiency in solving real-world problems.. |
Unit-1 |
Teaching Hours:9 |
Introduction to Neural Networks
|
|
Neural Networks-Application Scope of Neural Networks-Artificial Neural Network: An Introduction- Evolution of Neural Networks-Basic Models of Artificial Neural Network- Biological neural network Vs ANN, Important Terminologies of ANNs-Supervised Learning Network. | |
Unit-2 |
Teaching Hours:9 |
Perceptron
|
|
Shallow neural networks- Perceptron Networks-Theory-Perceptron Learning Rule Architecture-Flowchart for training Process-Perceptron Training Algorithm for Single and Multiple Output Classes.
| |
Unit-3 |
Teaching Hours:9 |
Convolutional Neural Network
|
|
Introduction to CNN , Architecture of CNN, Advantages of CNN over other Neural Networks, Types of Neural network architectures, Applications of CNN, Different layers and its use to build a CNN model, Real-time use cases of CNN. | |
Unit-4 |
Teaching Hours:9 |
Recurrent Neural Network
|
|
Introduction to RNN,How RNN is different from other Neural Network models,Structure and working of RNN,Exploding and Vanishing Gradient descend problem, Long Short-Term Memory (LSTM),How LSTM overcome the problem of Vanishing Gradient descent?,Real-time use-cases of LSTM. | |
Unit-5 |
Teaching Hours:9 |
Restricted Boltzmann Machine and Autoencoders
|
|
Restricted Boltzmann Machine (RBM), Applications of RBM, Collaborative Filtering with RBM, Introduction to Autoencoders, Autoencoders applications,Types of encoders and applications. | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern CIA 50% ESE 50% | |
CSC653AY - CLOUD COMPUTING LAB (2022 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
The main objectives of this course are to:
|
|
Learning Outcome |
|
CO1: Demonstrate proficiency in deploying and managing cloud resources using leading cloud platforms like AWS, Azure, or Google Cloud. CO2: Apply security best practices to ensure data protection and compliance within cloud environments. CO3: Utilize various cloud services effectively to optimize resource usage, scalability, and performance. CO4: Develop the ability to design and implement cloud-based solutions that meet specific business requirements and objectives. |
Unit-1 |
Teaching Hours:60 |
List of programs
|
|
Lab Exercise 1: Introduction to Cloud Computing Concepts
Lab Exercise 2: Virtualization and Cloud Architecture
Lab Exercise 3: Data Storage in the Cloud
Lab Exercise 4: Cloud Networking and Security
Lab Exercise 5: Deploying Applications on Cloud Platforms
Lab Exercise 6: Monitoring and Logging in the Cloud
Lab Exercise 7: Cloud Identity and Access Management (IAM)
Lab Exercise 8: High Availability and Disaster Recovery
Lab Exercise 9: Serverless Computing and Function as a Service (FaaS)
Lab Exercise 10: Big Data and Analytics in the Cloud
Lab Exercise 11: Internet of Things (IoT) and Cloud Integration
Lab Exercise 12: DevOps Practices in the Cloud
Lab Exercise 13: Container Orchestration with Kubernetes
Lab Exercise 14: Hybrid and Multi-Cloud Deployments
Lab Exercise 15: Cost Optimization and Resource Management
Lab Exercise 16: Case Study
| |
Text Books And Reference Books: - | |
Essential Reading / Recommended Reading - | |
Evaluation Pattern CIA 50% ESE 50% | |
CSC653BY - DIGITAL IMAGE PROCESSING LAB (2022 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
The main objectives of this course are to:
|
|
Learning Outcome |
|
CO1: Read, understand and trace the execution of image processing using MATLAB language. CO2: Write the MATLAB code for a given operation. CO3: Implement digital image processing concepts with MATLAB procedures and steps.
|
Unit-1 |
Teaching Hours:60 |
List of Programs
|
|
| |
Text Books And Reference Books:
3. Palm, W.J. “MATLAB for Engineering Applications”, McGraw-Hill Education, ISBN:9781260084719, 2018, https://books.google.co.in/books?id=TG9XuQEACAAJ | |
Essential Reading / Recommended Reading - | |
Evaluation Pattern CIA 50% ESE 50% | |
CSC653CY - NEURAL NETWORKS AND DEEP LEARNING LAB (2022 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:2 |
Course Objectives/Course Description |
|
The main objectives of this course are to:
|
|
Learning Outcome |
|
CO1: Students will be able to implement various neural network models, including perceptrons, feedforward networks, CNNs, RNNs, and LSTMs. CO2: Students will gain proficiency in preprocessing data and training neural networks using popular frameworks such as TensorFlow or PyTorch. CO3: Students will be able to fine-tune model parameters, optimize performance, and evaluate model effectiveness. CO4: Students will develop problem-solving skills by applying neural networks to real-world datasets and tasks. |
Unit-1 |
Teaching Hours:60 |
List of Programs
|
|
Lab Exercise 1: Perceptron Implementation
Lab Exercise 2: Binary Classification with Feedforward Neural Network
Lab Exercise 3: Handwritten Digit Recognition with CNN
Lab Exercise 4: Transfer Learning
Lab Exercise 5: Image Generation with Variational Autoencoders
Lab Exercise 6: Sequential Data Processing with RNN
Lab Exercise 7: Sequence Prediction with LSTM
Lab Exercise 8: Hyperparameter Tuning
Lab Exercise 9: Advanced LSTM Training
Lab Exercise 10: Advanced Model Optimization
| |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading - | |
Evaluation Pattern CIA 50% ESE 50% | |
MAT631Y - NUMERICAL METHODS (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
To explore complex world problems physicists, engineers, financiers and mathematicians require certain methods. These practical problems can rarely be solved analytically. Their solutions can only be approximated through numerical methods. This course deals with the theory and application of numerical approximation techniques. This course will help the learner to
|
|
Learning Outcome |
|
CO1: understand floating point numbers and the role of errors and its analysis in numerical methods. CO2: derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations. CO3: Apply numerical methods to obtain approximate solutions to mathematical problems. CO4: understand the accuracy, consistency, stability and convergence of numerical methods. |
Unit-1 |
Teaching Hours:15 |
Error analysis, Nonlinear equations, and solution of a system of linear equations
|
|
Errors and their analysis, Floating point representation of numbers, solution of algebraic and Transcendental Equations: Bisection method, fixed point Iteration method, the method of False Position, Newton Raphson method and Mullers method. Solution of linear systems, matrix inversion method, Gauss elimination method, Gauss-Seidel and Gauss-Jacobi iterative methods, modification of the Gauss method to compute the inverse, LU decomposition method. | |
Unit-1 |
Teaching Hours:15 |
Error analysis, Nonlinear equations, and solution of a system of linear equations
|
|
Errors and their analysis, Floating point representation of numbers, solution of algebraic and Transcendental Equations: Bisection method, fixed point Iteration method, the method of False Position, Newton Raphson method and Mullers method. Solution of linear systems, matrix inversion method, Gauss elimination method, Gauss-Seidel and Gauss-Jacobi iterative methods, modification of the Gauss method to compute the inverse, LU decomposition method. | |
Unit-2 |
Teaching Hours:15 |
Finite Differences, Interpolation, and Numerical differentiation and Integration
|
|
Finite differences: Forward difference, backward difference and shift operators, separation of symbols, Newton’s formulae for interpolation, Lagrange’s interpolation formulae, numerical differentiation. Numerical integration: Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule. | |
Unit-2 |
Teaching Hours:15 |
Finite Differences, Interpolation, and Numerical differentiation and Integration
|
|
Finite differences: Forward difference, backward difference and shift operators, separation of symbols, Newton’s formulae for interpolation, Lagrange’s interpolation formulae, numerical differentiation. Numerical integration: Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule. | |
Unit-3 |
Teaching Hours:15 |
Numerical Solution of Ordinary Differential Equations
|
|
Numerical solution of ordinary differential equations, Taylor’s series, Picard’s method, Euler’s method, modified Euler’s method, Runge-Kutta methods, second order (with proof) and fourth order (without proof). | |
Unit-3 |
Teaching Hours:15 |
Numerical Solution of Ordinary Differential Equations
|
|
Numerical solution of ordinary differential equations, Taylor’s series, Picard’s method, Euler’s method, modified Euler’s method, Runge-Kutta methods, second order (with proof) and fourth order (without proof). | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern
| |
MAT641C - DISCRETE MATHEMATICS (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
Course description: It is a fundamental course in combinatorics involving set theory, permutations and combinations, generating functions, recurrence relations and lattices. Course objectives: This course will help the learner to COBJ1. gain a familiarity with fundamental concepts of combinatorial mathematics. COBJ2. understand the methods and problem solving techniques of discrete mathematics COBJ3. apply knowledge to analyze and solve problems using models of discrete mathematics |
|
Learning Outcome |
|
CO 1: On successful completion of the course, the students should be able to enhance research, inquiry, and analytical thinking abilities. CO 2: On successful completion of the course, the students should be able to apply the basics of combinatorics in analyzing problems. CO 3: On successful completion of the course, the students should be able to enhance problem-solving skills. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Combinatorics
|
|||||||||||||||||||||||||||||
Permutations and combinations, laws of set theory, Venn diagrams, relations and functions, Stirling numbers of the second kind, Pigeon hole principle. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Enumeration
|
|||||||||||||||||||||||||||||
Principle of inclusion and exclusion, generating functions, partitions of integers and recurrence relations. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Lattice Theory
|
|||||||||||||||||||||||||||||
Partially ordered set, lattices and their properties, duality principle, lattice homomorphisms, product lattices, modular and distributive lattices, Boolean lattices. | |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT641D - NUMBER THEORY (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course is an introduction to elementary topics of analytical number theory. Topics such as divisibility, congruences and number-theoretic functions are discussed in this course. Some of the applications of these concepts are also included. Course Objectives: This course will help the learner to COBJ1. engage in sound mathematical thinking and reasoning. COBJ2. analyze, evaluate, or solve problems for given data or information. COBJ3. understand and utilize mathematical functions and empirical principles and processes. COBJ4. develop critical thinking skills, communication skills, and empirical and quantitative skills. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: After the completion of this course, learners are expected to effectively express the concepts and results of number theory. CO2: After the completion of this course, learners are expected to understand the logic and methods behind the proofs in number theory. CO3: After the completion of this course, learners are expected to solve challenging problems in number theory. CO4: After the completion of this course, learners are expected to present specific topics and prove various ideas with mathematical rigour. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Divisibility
|
|||||||||||||||||||||||||||||
The division algorithm, the greatest common divisor, the Euclidean algorithm, the linear Diophantine equation, the fundamental theorem of arithmetic, distribution of primes. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Linear Congruence
|
|||||||||||||||||||||||||||||
Basic properties of congruences, systems of residues, number conversions, linear congruences and Chinese remainder theorem, a system of linear congruences in two variables, Fermat’s Little Theorem and pseudoprimes, Wilson’s Theorem. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Number Theoretic Functions
|
|||||||||||||||||||||||||||||
The Greatest Integer Function, Euler’s Phi-Function, Euler’s theorem, Some Properties of Phi-function. Applications of Number Theory: Hashing functions, pseudorandom Numbers, check bits, cryptography.
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT641E - FINANCIAL MATHEMATICS (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description:Financial Mathematics deals with the solving of financial problems by using Mathematical methods. This course aims at introducing the basic ideas of deterministic mathematics of finance. The course focuses on imparting sound knowledge on elementary notions like simple interest, complex interest (annual and non-annual), annuities (varying and non-varying), loans and bonds. Course objectives: This course will help the learner to COBJ 1: gain familiarity in solving problems on Interest rates and Level Annuitiesd COBJ 2: derive formulae for different types of varying annuities and solve its associated problems COBJ 3: gain in depth knowledge on Loans and Bonds and hence create schedules for Loan Repayment and Bond Amortization Schedules. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to deal with the elementary notions like simple interest, compound interest and Annuities. CO2: On successful completion of the course, the students should be able to solve simple problems on interest rates, annuities, varying annuities, non-annual interest rates, loans and bonds. CO3: On successful completion of the course, the students should be able to apply the formulae appropriately in solving problems that mimics real life scenario. |
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Interest Rates, Factors and Level Annuities
|
|||||||||||||||||||||||||||||
Interest Rates, Rate of discount, Nominal rates of interest and discount, Constant force of interest, Force of interest, Inflation, Equations of Value and Yield Rates, Annuity-Immediate, Annuity-Due, Perpetuities, Deferred Annuities and values on any date, Outstanding Loan Balances (OLB) | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Varying Annuities
|
|||||||||||||||||||||||||||||
Non-level Annuities, Annuities with payments in Geometric Progression, Annuities with payment in Arithmetic Progression, Annuity symbols for non-integral terms, Annuities with payments less/more frequent than each interest period and payments in Arithmetic Progression, Continuously Payable Annuities. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:15 |
||||||||||||||||||||||||||||
Loans Repayment and Bonds
|
|||||||||||||||||||||||||||||
Amortized loans and Amortization Schedules, The sinking fund method, Loans with other repayment patterns, Yield rate examples and other repayment patterns, Bond symbols and basic price formula, Other pricing formula for bonds, Bond Amortization Schedules, Valuing a bond after its date of issue. | |||||||||||||||||||||||||||||
Text Books And Reference Books: L. J. F. Vaaler and J. W. Daniel, Mathematical interest theory. Mathematical Association of America, 2009. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
MAT651C - DISCRETE MATHEMATICS USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course description: This course aims at providing hands on experience in using Python functions to illustrate the notions of combinatorics, set theory and relations. Course objectives: This course will help the learner to COBJ1. gain a familiarity with programs on fundamental concepts of Combinatorial Mathematics COBJ2. understand and apply knowledge to solve combinatorial problems using Python |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to attain sufficient skills in using Python functions CO2: On successful completion of the course, the students should be able to demonstrate programming skills in solving problems related to applications of computational mathematics. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT651D - NUMBER THEORY USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: This course will help the students to gain hands-on experience in using Python for illustrating various number theory concepts such as the divisibility, distribution of primes, number conversions, congruences and applications of number theory. Course Objectives: This course will help the learner to COBJ1. be familiar with the built- in functions required to deal with number theoretic concepts and operations. COBJ2. develop programming skills to solve various number theoretic concepts. COBJ3. gain proficiency in symbolic computation using python. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successfully completing the course, the students should be able to use Python to solve problems in number theory, number conversions. CO2: On successfully completing the course, the students should be able to use Python to demonstrate the understanding of number theory concepts. CO3: On successfully completing the course, the students should be able to use Python to model and solve practical problems using number theoretic concepts. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics:
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: J.C. Bautista, Mathematics with Python Programming, Lulu.com, 2014. | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading M. Litvin and G. Litvin, Mathematics for the Digital Age and Programming in Python, Skylight Publishing, 2010. | |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT651E - FINANCIAL MATHEMATICS USING EXCEL AND PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Course Description: The course aims at providing hands on experience in using Excel/Python programming to illustrate the computation of constant/varying force of interest, continuously payable varying/non-varying annuities, increasing/decreasing annuity immediate/due, loans and bonds. Course objectives: This course will help the learner to COBJ1. aacquire skill in solving problems on Financial Mathematics using Python. COBJ2. gain proficiency in using the Python programming skills to solve problems on Financial Mathematics. |
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: On successful completion of the course, the students should be able to demonstrate sufficient skills in using Python programming language for solving problems on Financial Mathematics. CO2: On successful completion of the course, the students should be able to apply the notions on various types of interests, annuities, loans and bonds, by solving problems using Python. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
Proposed Topics
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books:
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab e-record. The parameters for evaluation under each component and the mode of assessment are given below.
| |||||||||||||||||||||||||||||
MAT651Y - NUMERICAL METHODS USING PYTHON (2022 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
This course will help the students to have an in-depth knowledge of various numerical methods required in scientific and technological applications. Students will gain hands on experience in using Python for illustrating various numerical techniques. This course will help the learner to
|
|||||||||||||||||||||||||||||
Learning Outcome |
|||||||||||||||||||||||||||||
CO1: implement a numerical solution method in a well-designed, well-documented Python program code. CO2: interpret the numerical solutions that were obtained in regard to their accuracy and suitability for applications. CO3: present and interpret numerical results in an informative way. |
Unit-1 |
Teaching Hours:30 |
Numerical Methods using Python
|
|
Some basic operations in Python for scientific computing Solution of Algebraic and Transcendental Equations a) Bisection method b) Fixed point Iteration method c) The method of False Position d) Newton-Raphson method
Solution of linear systems a) Gauss Elimination method b) Gauss-Seidel Iterative method c) Gauss-Jacobi Iterative method d) LU Decomposition method
Numerical Differentiation and Integration
Solution of Differential Equations a) Euler’s method b) Runge Kutta method | |
Unit-1 |
Teaching Hours:30 |
Numerical Methods using Python
|
|
Some basic operations in Python for scientific computing Solution of Algebraic and Transcendental Equations a) Bisection method b) Fixed point Iteration method c) The method of False Position d) Newton-Raphson method
Solution of linear systems a) Gauss Elimination method b) Gauss-Seidel Iterative method c) Gauss-Jacobi Iterative method d) LU Decomposition method
Numerical Differentiation and Integration
Solution of Differential Equations a) Euler’s method b) Runge Kutta method | |
Text Books And Reference Books: J. Kiusalaas, Numerical methods in engineering with Python 3, Cambridge University Press, 2013. | |
Essential Reading / Recommended Reading H. Fangohr, Introduction to Python for Computational Science and Engineering (A beginner’s guide), University of Southampton, 2015. | |
Evaluation Pattern
|